5,957 research outputs found

    Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity

    Full text link
    We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells near a polar surface of LaAlO3 (001). As the surface is brought in proximity to the LaVO3 layer, an exponential drop in resistance and a decreasing positive Seebeck coefficient is observed below a characteristic coupling length of 10-15 unit cells. We attribute this behavior to a crossover from an atomic reconstruction of the AlO2-terminated LaAlO3 surface to an electronic reconstruction of the vanadium valence. These results suggest a general approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure

    Early endosome motility spatially organizes polysome distribution.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tEarly endosomes (EEs) mediate protein sorting, and their cytoskeleton-dependent motility supports long-distance signaling in neurons. Here, we report an unexpected role of EE motility in distributing the translation machinery in a fungal model system. We visualize ribosomal subunit proteins and show that the large subunits diffused slowly throughout the cytoplasm (Dc,60S = 0.311 ”m(2)/s), whereas entire polysomes underwent long-range motility along microtubules. This movement was mediated by "hitchhiking" on kinesin-3 and dynein-driven EEs, where the polysomes appeared to translate EE-associated mRNA into proteins. Modeling indicates that this motor-driven transport is required for even cellular distribution of newly formed ribosomes. Indeed, impaired EE motility in motor mutants, or their inability to bind EEs in mutants lacking the RNA-binding protein Rrm4, reduced ribosome transport and induced ribosome aggregation near the nucleus. As a consequence, cell growth was severely restricted. Collectively, our results indicate that polysomes associate with moving EEs and that "off- and reloading" distributes the protein translation machinery.This work was supported by Wellcome Trust (097835/Z/11/Z) and the Biotechnology and Biological Sciences Research Council (BB/H019774/1)

    Optical control of magnetization of micron-size domains in antiferromagnetic NiO single crystals

    Full text link
    We propose Raman-induced collinear difference-frequency generation (DFG) as a method to manipulate dynamical magnetization. When a fundamental beam propagates along a threefold rotational axis, this coherent second-order optical process is permitted by angular momentum conservation through the rotational analogue of the Umklapp process. As a demonstration, we experimentally obtained polarization properties of collinear magnetic DFG along a [111] axis of a single crystal of antiferromagnetic NiO with micro multidomain structure, which excellently agreed with the theoretical prediction.Comment: 11 pages, 3 figures, submitted to Physical Review Letter

    AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture

    Full text link
    A free-theory vacuum state of an interacting field theory, e.g. quantum gravity, is unstable at tree level in general due to spontaneous emission of Fock-space particles in any spacetime with no global timelike Killing vectors, such as de Sitter spacetime, in the interaction picture. As an example, the rate of spontaneous emission of Fock-space particles is calculated in phi^4 theory in de Sitter spacetime. It is possible that this apparent spontaneous emission does not correspond to any physical processes because the states are not evolved by the true Hamiltonian in the interaction picture. Nevertheless, the constant spontaneous emission of Fock-space particles in the interaction picture clearly demonstrates that the in- and out-vacuum states are orthogonal to each other as emphasized by Polyakov and that the in-out perturbation theory, which presupposes some overlap between these two vacuum states, is inadequate. Other possible implications of apparent vacuum instability of this kind in the interaction picture are also discussed.Comment: title changed, 7 page

    Vsop2/Astro-G Project

    Full text link
    We introduce a new space VLBI project, the Second VLBI Space Observatory Program (VSOP2), following the success of the VLBI Space Observatory Program (VSOP1). VSOP2 has 10 times higher angular resolution, up to about 40 micro arcseconds, 10 times higher frequency up to 43 GHz, and 10 times higher sensitivity compared to VSOP1. Then VSOP2 should become a most powerful tool to observe innermost regions of AGN and astronomical masers. ASTRO-G is a spacecraft for VSOP2 project constructing in ISAS/JAXA since July 2007. ASTRO-G will be launched by JAXA H-IIA rocket in fiscal year 2012. ASTRO-G and ground-based facilities are combined as VSOP2. To achieve the good observation performances, we must realize new technologies. They are large precision antenna, fast-position switching capability, new LNAs, and ultra wide-band down link, etc.. VSOP2 is a huge observation system involving ASTRO-G, ground radio telescopes, tracking stations, and correlators, one institute can not prepare a whole system of VSOP2. Then we must need close international collaboration to get sufficient quality of resultant maps and to give a sufficient quantity of observation time for astronomical community. We formed a new international council to provide guidance on scientific aspects related of VSOP2, currently called the VSOP2 International Science Council (VISC2).Comment: 10 pages, 9 figures, proceedings of The Universe under the Microscope Astrophysics at High Angular Resolutio

    Changes in the carbon balance of tropical forest: evidence from long-term plots

    Get PDF
    The role of the world’s forests as a “sink” for atmospheric carbon dioxide is the subject of active debate. Long-term monitoring of plots in mature humid tropical forests concentrated in South America revealed that biomass gain by tree growth exceeded losses from tree death in 38 out of 50 neotropical sites. These forest plots have accumulated 0.71 + 0.34 tons of carbon per hectare per year in recent decades. The data suggest that neotropical forests may be a significant carbon sink, reducing the rate of increase in atmospheric CO2

    Complex organics in IRAS 4A revisited with ALMA and PdBI: Striking contrast between two neighbouring protostellar cores

    Full text link
    We used the Atacama Large (sub-)Millimeter Array (ALMA) and the IRAM Plateau de Bure Interferometer (PdBI) to image, with an angular resolution of 0.5â€Čâ€Č'' (120 au) and 1â€Čâ€Č'' (235 au), respectively, the emission from 11 different organic molecules in the protostellar binary NGC1333 IRAS 4A. We clearly disentangled A1 and A2, the two protostellar cores present. For the first time, we were able to derive the column densities and fractional abundances simultaneously for the two objects, allowing us to analyse the chemical differences between them. Molecular emission from organic molecules is concentrated exclusively in A2 even though A1 is the strongest continuum emitter. The protostellar core A2 displays typical hot corino abundances and its deconvolved size is 70 au. In contrast, the upper limits we placed on molecular abundances for A1 are extremely low, lying about one order of magnitude below prestellar values. The difference in the amount of organic molecules present in A1 and A2 ranges between one and two orders of magnitude. Our results suggest that the optical depth of dust emission at these wavelengths is unlikely to be sufficiently high to completely hide a hot corino in A1 similar in size to that in A2. Thus, the significant contrast in molecular richness found between the two sources is most probably real. We estimate that the size of a hypothetical hot corino in A1 should be less than 12 au. Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness.Comment: Accepted in Astronomy and Astrophysic

    Kinematical Hilbert Spaces for Fermionic and Higgs Quantum Field Theories

    Get PDF
    We extend the recently developed kinematical framework for diffeomorphism invariant theories of connections for compact gauge groups to the case of a diffeomorphism invariant quantum field theory which includes besides connections also fermions and Higgs fields. This framework is appropriate for coupling matter to quantum gravity. The presence of diffeomorphism invariance forces us to choose a representation which is a rather non-Fock-like one : the elementary excitations of the connection are along open or closed strings while those of the fermions or Higgs fields are at the end points of the string. Nevertheless we are able to promote the classical reality conditions to quantum adjointness relations which in turn uniquely fixes the gauge and diffeomorphism invariant probability measure that underlies the Hilbert space. Most of the fermionic part of this work is independent of the recent preprint by Baez and Krasnov and earlier work by Rovelli and Morales-Tec\'otl because we use new canonical fermionic variables, so-called Grassman-valued half-densities, which enable us to to solve the difficult fermionic adjointness relations.Comment: 26p, LATE
    • 

    corecore